skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hellman, Ashley"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Three complexes based on an Ir–M (M = FeII, CoII, and NiII) heterobimetallic core and 2-(diphenylphosphino)pyridine (Ph2PPy) ligand were synthesized via the reaction of trans-[IrCl(CO)(Ph2PPy)2] and the corresponding metal chloride. Their structures were established by single-crystal X-ray diffraction as [Ir(CO)(μ-Cl)(μ-Ph2PPy)2FeCl2]·2CH2Cl2 (2), [IrCl(CO)(μ- Ph2PPy)2CoCl2]·2CH2Cl2 (3), and [Ir(CO)(μ-Cl)(μ-Ph2PPy)2NiCl2]·2CH2Cl2 (4). Time-dependent DFT computations suggest a donor-acceptor interaction between a filled 5dz2 orbital on iridium and an empty orbital on the first-row metal atom, which is supported by UV-vis studies. Magnetic moment measurements show that the first-row metals are in their high- spin electronic configurations. Cyclic voltammetry data show that all the complexes undergo irreversible decomposition upon either reduction or oxidation. Reduction of 4 proceeds through ECE mechanism. While these complexes are not stable to electrocatalysis conditions, the data presented here refine our understanding of the bonding synergies of the first-row and third-row metals. 
    more » « less